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O N  P A R T I C U L A T E  F A L L O U T  O F  P O L L U T A N T S  F R O M  

A L A R G E - S I Z E D  C L O U D  I N  A S T A B L Y  S T R A T I F I E D  A T M O S P H E R E  

K. O. Sabdenov  and S. V.  Zubkov UDC 530.17 

The paper deals with ecological problems. Failures at chemical factories and atomic power plants cause 
discharges of large amounts  of substances that  are harmful to every life form. Similarly, hazardous substances 
are ejected in ground tests of large solid-propellant rocket engines which are conducted in many countries. 
The typical feature of the above processes is that  large amounts of pollutants ejected into the atmosphere 
in a short period of t ime form a cloud. The Archimedean force causes the cloud to ascend to an altitude 
usually called the cloud hanging altitude. The cloud contains, as a rule, liquid and solid particles (inclusions), 
whose sizes and masses exceed by far the sizes and masses of the gas molecules in air and of the molecules of 
the ejected substance. To calculate the amounts of pollutants fallen onto the ground, two theories have been 
proposed so far: the diffusion theory and the gravitational theory [1]. The former is developed similarly to the 
kinetic theory of gases, while the latter considers the motion of a particulate conglomerate as the motion of a 
liquid in the gravity field. The limits of applicability of either theory are usually not indicated in publications, 
but it is clear that  there must  be a parameter that  would determine whether and when the above theories are 
applicable, depending on specific situations. 

One can note that  there is a parameter  called the sluggishness index [2]. It is a product of the typical 
frequency of gas-flow turbulent  pulsations and the typical t ime of the relative particle-velocity change in 
viscous (Stokes) gas flow. Although this index turns out to be an important  parameter  in considering, from 
the general standpoint,  the particle motion in a turbulent  medium by gravity, it does not, in fact, determine 
the limits of applicability of the diffusion and gravitational theories. This can be seen from the fact that 
free-falling acceleration does not enter the sluggishness index. The index in question determines the proximity 
of numerical values of the coefficients of turbulent diffusion of particles and of gaseous (liquid) medium [2]. 

Evidently, the parameter  we need is the ratio v , / u  ~ (v,  is the particle-fall velocity in a laminar-flow 
medium and u ~ is the mean-square value of the gas-velocity pulsation). It characterizes the ratio of the gravity 
force Fg and the force Ft of viscous resistance at a randomly changing velocity of the air flow around the 
particle. Here F 9 ,,~ d3ppg; Ft "~ ugdpgu~; d is the typical particle size; pp is the particle density; g is the 
acceleration of gravity; ug is the kinematic gas viscosity; and pg is the gas density. 

If v , / u  ~ >> 1, the particles settle on the ground by the gravity mechanism. The  diffusion spread in thc 
particle path is relatively small. If v , / u  ~ << 1, turbulent  diffusion becomes the determining factor. One can 
easily see that  the sluggishness index enters the above ratio of the velocities. 

For turbulent  flows, one can take the mean flow velocity u ~ (in this work, the mean wind velocity) 
instead of vg. For sufficiently small wind velocities (for a specified v,), the turbulent  transfer of particles is 
insignificant. 

In this work, a somewhat peculiar form of the gravitational theory is employed: the particle motion 
from the cloud to the ground is regarded not as the liquid motion (for this to be the case, the particles must 
interact strongly) but  as the motion with a specified velocity field. The physicomathematical  content of the 
model reflects the essence of natural phenomena such as snow, rain, or hail falls. Its simplicity allows one 
quickly to obtain data  - -  rough as they may be - -  on the pollution level of the ground surface in the case 
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of still weather. This can be important  when one faces a failure at a chemical factory or atomic power plant 
and has to make a decision. 

Further considerations are based on the assumption that  the ground surface under the discharged cloud 
of gas and particles is smooth and uniform. This allows one to assume that  the atmospheric layer above the 
ground surface is stably stratified, provided that  the wind velocities are small. 

Solving the problem of the evolution of such a cloud would allow one to assess more or less exactly the 
actual scale of a catastrophe and take effective steps both to prevent failures and eliminate their consequences 
under the above conditions. 

1. E v o l u t i o n  of  a T u r b u l e n t  L a r g e - S i z e d  C l o u d  in a S t a b l y  S t r a t i f i e d  A t m o s p h e r e .  The 
cloud discharged into the atmosphere in a short period of t ime is a mixed liquid. It spreads (collapses) under 
the action of propelling intrusion forces [3, 4]. If the typical t ime of particulate fallout is far greater than that  
of cloud formation and of ascent to the hanging altitude, one can assume the cloud to have ascended to the 
hanging alt i tude instantaneously. The  physical mechanism of intrusion was studied experimentally in [3] and 
described in detail in [4]. Three pronounced stages of collapse are pointed out in [3]: 

(1) the initial (significantly nonsteady) stage, in which the propelling intrusion force exceeds by far the 
inertial forces; 

(2) the intermediate stage, in which the propelling intrusion force is counterbalanced by the shape and 
wave resistance; and 

(3) the final stage, in which the propelling intrusion force is counterbalanced by viscous resistance. 
For small-sized clouds of mixed liquid, the third stage is the most prolonged one, as was shown by 

experiments in [3, 5]. Here small clouds correspond to Reynolds numbers Re which are far smaller than the 
critical Recr. In the initial stage of collapse, the Reynolds number  is determined by the equality Re = NV2/a/v,  
where N is the Brunt-V$iss163 frequency (for the Earth's atmosphere, N = 0.01 sec -1) 

dp 91112; 

p is the air density; z is the coordinate directed vertically to the ground surface; V is the cloud volume; and 
u is the kinematic gas viscosity in the cloud. 

The problem of collapse for the viscous stage under the assumption that  Re << Rear = 2300 is solved in 
[6]. This solution is also presented in [4], and the results of [6] are confirmed experimentally in [5]. Our prime 
interest is in the case where Re >> Reef, i.e., we assume failures at chemical factories or atomic power plants 
to be large-scale. We also assume that  for both large and small Re values, the third stage is the longest. 

Under the above assumptions,  the s ta tement  of the problem has a form similar to [4]: 

Oh 1 0 
0--[ + -r rvh = 0; (1.1) 

0 
Or ph = r,;  (1.2) 

N2 h 2. (1.3) P= Pl --~ 

Here h is the half-thickness of the cloud; r is the radial coordinate; v is the gas velocity in the cloud; p is the 
pressure; r,  is the turbulent  stress; and pl is the cloud-gas density which is equal to the air density at the 
cloud hanging altitude. 

Contrary to [4], we use in (1.2) the turbulent  stress instead of the viscous stress. The former can be 
easily found from analysis of dimensions, similarly as in [4]: 

r, = plze2v 2 (1.4) 

(ee is an empirical constant). 
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From (1.2)-(1.4) we have 

N { _ Oh3"~l] 2 
( 1 . 5 )  V 

- 2,/5  -g7 ] �9 

Substituting relation (1.5) in (1.1), we readily find 

( Oh~a/2h20h 1 1 0 ( Ohh~ 
Or] Ot t, r 2 Or r2 (t,  = 20he/N). (1.6) . . . .  - g T ]  

Equation (1.5) is supplemented by the condition of conservation of volume 

[ h(r, t )rdr  = V = 2~r const (:.7) 
0 

(V is half the volume of the cloud) and by the condition that  the solution vanishes at infinity: 

h ( ~ ,  t) = 0. (1.8) 

Condition (1.7) is easily justified. When the cloud is large-sized, entrainment of the surrounding gas is 
a weak surface effect of the order of S/2V ..~ 1/L (S is the cloud-surface area and L is its typical size). 

This reasoning is valid for the initial stage of collapse in which the cloud shape is nearly spherical and 
the velocity v is a relatively large quantity. Later v decreases. The fact that  the velocity tends to diminish 
is due to the parabolic character of Eq. (1.5) and to the absence of source-related terms in it. Below, we 
demonstrate that  v decreases faster than r2(t) [r0(t) is the typical cloud radius]. Thus we are justified in 
ignoring entrainment of the surrounding air by the cloud at the later moments of time. 

A solution of the problem (1.6)-(1.8) with arbitrary initial conditions can be found only numerically. 
One can expect that  after a little while the collapse will proceed in a self-similar regime, as in [3- 
5]. To find a self-similar solution, we change the variables: h = ho(t)Z(~), ~ = r/to(t), ho(t) = 
(9/4) 4/9 [~/-V/(27r) 5/3] (t,/(t + t l))  4/9, and to(t) = ~/'2-~-'V(4/9)2/9((t -b tl)/t,) 219 (tl is the conditional onset 
of the self-similar regime). 

Substitution of the above relations in (1.6)-(1.8), brings about the following problem: 

Z 2 ( _  dZ\:12/ dZ 1 d dZ 5) 

/ = 1, = O. (1.10) 

0 

Analysis of Eq. (1.9) shows that  for ~ --* 0, 

= c, - 3. (1.11) 

If we take into account the second condition in (1.10), it follows that  for ( ---* ( , ,  

= c3( , - ( : . : 2 )  

(C:, C2, C3, and : ,  are the numbers).  
Since (1.9) contains the square root of the first derivative of the function Z( : ) ,  we assume that Z(:)  is 

a monotonically decreasing function in the interval [0, ~,]. Bearing the above in mind and taking into account 
the asymptot ic  behavior of (1.11) and (1.12), we seek a solution of (1.9) in the form 

Z = a(~ 3 - ~3)1/3, a -- const. (1.13) 

Substi tut ing relation (1.13) into (1.9), we easily derive the algebraic equation (1 - 20a3/2)(~ 3 - (3/2)~ 3) = 0 
from which, in view of the arbitrariness of ~, we find a = 20 -5/3 ~ 0.14. 
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The first of conditions (1.10) leads to the relation 

1 

3 3 
0 

where 7 /=  ~/~, and B is the Euler beta-function. Expressing B through F (the Euler gamma-function),  we 
obtain 

~,3 _ 3.  202/3F(2) 
18.3 or ~, ~2 .63 .  

5 r 

It was noted above that  the gas velocity v inside the cloud decreases more rapidly than r2(t). According 
to (1.5), v ,,, r / t .  The velocity reaches its maximum at r = ~,ro(t). The ent ra inment  of air is of the order 
(the pulsation component  of the velocity is proportional to v) r2v ,,, r~(t)/ t  ,,, t -1/3 ~ 0 for t ~ oo. Thus, a 
decrease in entrainment of the surrounding gas occurs faster than the change in the typical size of the cloud, 
and the volume-constancy condition (1.7) is justified for large moments  of t ime, too. 

The two-dimensional problem is solved similarly. In this case, the formulation of the problem in 
dimensional variables has the form 

h2 ( O~x)l /20h 1 02h 5 lOae y 
- 0-'-[= t ,  Ox 2 '  t , =  N ' h ( x , t ) d z = S ' / 2 = c o n s t ,  h(oo, t ) = 0 .  

0 

Here S ~ is half the cross-sectional area of the cloud and x is the coordinate along the ground surface which is 
orthogonal to the cloud's axis. 

To pass to self-similar variables, we use the following relations: 

( t. 
h = ho(t)Z(~), ~ = xo(t) '  ho(t) = - ~  \ t - - ~ i J  , x , ( t )  = Wf~ \ - -~,  / . 

This leads to the problem 

Its solution can be written as 

Z + ~ + d~ 2 - 0 ,  Z(~)d~ = 1, Z(oo) = 0 .  
o 

= 3 a = 1 0 - 2 / 3 ,  = 

One can assess the atmospheric pollution by gaseous pollutants by employing the solution of the 
problem considered in this section. Recall that  the theory presented is valid for small wind velocities, when 
the mean-square value of the pulsational velocity is far less than the velocity v of the cloud boundary. 

2. M o d e l  of  P a r t i c u l a t e  F a l l o u t  of  P o l l u t a n t s  f r o m  a C l o u d  to  t h e  G r o u n d  Sur face .  As a 
rule, a cloud discharged to the atmosphere contains solid or liquid particulate pollutants,  with the particle 
sizes changing from a few micrometers to tens of micrometers. An important  quant i ty  which can used in 
estimating the level of ground-surface contamination is the amount  r y) of pollutants fallen per unit area. 

We shall first consider formula (1.13). The curve given by the formula changes little virtually in the 
entire interval [0 ~< ( ~< ~,]. Only near ~ = ~, does this curve cut off abruptly. This allows one to replace 
(1.13) by an approximately rectangular profile with height ho(t) and width ~,ro(t). 

The change of cr at the point (z, y) at t ime t is then specified by the equation 

dcr/dt = j, (2.1) 

where j is the particulate flow from the cloud j = pv,O[~,ro( t ) -  ~/(x - vlt) 2 + y2]; p is the particle density 
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Fig. 1 

in the cloud; v, is the typical velocity of particulate fallout from the cloud which remains constant; 0[z] is the 
Heaviside function 

1, z ) O ,  
e[z]= 0, z<0; 

and vl is the wind velocity at the cloud hanging altitude. 
The Heaviside function fixes the projection of the cloud boundary onto the ground surface. Further, 

p = M/2V (M is the total mass of particles in the cloud). 
There is an indirect assumption in (2.1) that  the particles in the cloud are distributed nonuniformly. 

This assumption is rough but simplifies the model significantly, since it is no longer necessary to consider the 
particle dynamics in the cloud. For M, the equation 

dM pv, S(t) M 
d t  - = IS( t )  = 

is valid. At t = 0, the latter equation with the initial condition M = M0 yields 

M=Moexp{_)~[( t+t1~13/9_/ t1~13/9]~ ~v*t* .5 ,39 ( ~4 4/9 2~, =17.gV*t* (2.2) 

To find a(t ,  x, y), we have to solve an ordinary differential equation of the first order 

da _ v ,M 0[~,r0(t) - ~/(x - vxt) 2 + y2 ] 
dt 2V 

subject to the initial condition a(t = 0) = 0. Here M is determined by expression (2.2). 
The  above problem was solved numerically by the Runge-Kut ta -Merson method.  The Heaviside 

function was approximated by the relation O[z] = (1 + e-XZ) -1, where 1/X is the typical length, which 
must be sufficiently small. In calculations, the typical length was set equal to 0.1 m. According to the Stokes 
formula [7], the typical sedimentat ion velocity in the laminary-flow medium is v, = (2/9)ppa2g/# (% is the 
particle radius and # is the dynamic gas viscosity in the cloud). 

In the case of a turbulent  medium, the relation has to be multiplied by a coefficient which would 
allow for the t ime during which the particles are delayed in the cloud. According to Monin and Yaglom [8], 
this can be the turbulence intensity ~ in the cloud. In our opinion, this is an oversimplified approach. The 
problem of choosing the right coefficient remains unsolved. In our calculations we had to use ~, yet we were 
fully aware of the fact that  what  we were doing was imprecise (or, possibly, even incorrect). The value of 

for Re = 106-107 is 0.03-0.05 [7, 8]. As for the coefficient ~, the reasoning presented in [8] shows that 
the coefficient is immediately related to the turbulent-diffusion processes in the cloud. This means that  the 
model presented herein can be extended to the cases where intrusion is not the only mechanism by which the 
particles scatter in space. The cloud can actively interact with the surrounding air. We have not yet studied 
this aspect in detail. 
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As an example, Fig. 1 shows the result of calculation of the surface concentration ~r in kg /m 2. The 
numerical values of the physical parameters are as follows: pp = 3010 kg /m 3, ap = 7.10 -6 m, g = 9.81 m/sec 2, 
vl = 10 m/sec,  # = 1 .8 .10  - s  k g / ( m ,  sec), V = 4.2.109 m a, ae = 0.3, ~ = 0.03, and M0 = 1.8.104 kg. 

The  calculations also show that  the dimensional parameters that  affect or(x, y) most significantly are 
v. and vl (or the dimensionless complex v,/Vl, to be precise). 

Let us make several remarks. In practical application of the model considered, one has to bear in mind 
that  upon leaving the cloud the particles pass a distance from the cloud to the ground surface. For this reason, 
if one takes the origin of coordinates as a discharge point, the calculated values of a must  be shifted at a 
certain distance x0 (for a,  this can be accomplished by making the subst i tute x ~ x + x0 in the equation). 
The distance x0 should be determined with regard for the fact that  the wind velocity changes with height. 

Compared with the known models, the model presented above has the advantage of being simple and 
having only one parameter  that  needs adjusting, namely the coefficient of v.. 

In this work, we assumed the ground surface to be smooth and uniform. This allowed us to ignore 
large-scale turbulent  processes which otherwise could be significant even under the assumption that  the wind 
velocity is small. As a result, the particle distribution would be different from r0 --, t 2/9 obtained above. 

Mankind has wide experience" in "encountering" radioactive clouds. Unfortunately, there are no 
classified experimental data  on their evolution from which one could deduce the law of scattering, determine 
the role of large-scale processes, and check the validity of the above model. 

Let us note in conclusion that  Berlyand [9] uses the equation of turbulent  diffusion for the case of 
small wind velocities. As has been mentioned above, the parameter  v,/u ~ draws a dividing line between the 
diffusion and gravitational theories. The  approach developed in [9] is valid for sufficiently fine particles at 
nonzero wind velocities. 
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